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ABSTRACT
Digital educational technologies offer the potential to cus-
tomize students’ experiences and learn what works for which
students, enhancing the technology as more students inter-
act with it. We consider whether and when attempting to
discover how to personalize has a cost, such as if the adap-
tation to personal information can delay the adoption of
policies that benefit all students. We explore these issues in
the context of using multi-armed bandit (MAB) algorithms
to learn a policy for what version of an educational technol-
ogy to present to each student, varying the relation between
student characteristics and outcomes and also whether the
algorithm is aware of these characteristics. Through simu-
lations, we demonstrate that the inclusion of student char-
acteristics for personalization can be beneficial when those
characteristics are needed to learn the optimal action. In
other scenarios, this inclusion decreases performance and in-
creases variation in student experiences. Moreover, includ-
ing unneeded student characteristics can systematically dis-
advantage students with less common values for these char-
acteristics. Our simulations do however suggest that real-
time personalization will be helpful in particular real-world
scenarios, and we illustrate this through case studies using
existing experimental results in ASSISTments [23]. Overall,
our simulations show that adaptive personalization in edu-
cational technologies can be a double-edged sword: real-time
adaptation improves student experiences in some contexts,
but the slower adaptation and increased variability mean
that a more personalized model is not always beneficial.

Keywords: multi-armed bandits, personalization, educa-
tional technologies, online adaptive algorithms, simulation

1. INTRODUCTION
Within educational technologies, there are a myriad of ways
to design instructional components such as hints or expla-

nations. Research in education and the learning sciences
provides some insight into how to design these resources
(e.g., [25, 3]). However, there is often uncertainty about
which version of a resource will be most effective in a partic-
ular context, and effectiveness may vary based on students’
characteristics, such as prior knowledge or motivation.

Randomized experiments are one way to compare multiple
versions of a technology, but such experiments impose a
delay between collecting required evidence and using that
evidence to improve student experiences. Recently, multi-
armed bandit (MAB) algorithms have been proposed to im-
prove technologies in real time: each student is assigned to
one version of the technology, and the algorithm observes
the student’s learning outcome [18, 28]. Each subsequent
student is more likely to be assigned to a version of the tech-
nology that has been more effective for previous students, as
the algorithm discovers what is effective. Such algorithms
maintain uncertainty as they learn, balancing exploring to
learn more about what works with exploiting the observed
results from previous students. Typical MAB algorithms
do not take into account student characteristics and thus
can only identify which version of a technology is better for
students on average, but contextual MAB algorithms can
personalize which version to assign to each student, poten-
tially increasing the number of students who are directed to
versions that are most helpful for them individually [24].

While deploying contextual MAB algorithms could improve
student experiences, it raises two potential issues. First, in-
structional designers must decide which student character-
istics will be considered for personalization. For instance,
more concrete examples might be more helpful for students
with lower prior knowledge, while more abstract examples
could be more helpful for students with higher prior knowl-
edge. This relationship could only be learned if the algo-
rithm has ‘prior knowledge’ as a feature of each student.
Should the algorithm also consider which prerequisite course
was taken when selecting an example, or is prior knowledge
sufficient? Designers are unlikely to be certain which char-
acteristics influence effectiveness, but the choice of charac-
teristics will influence the performance of the algorithm. Ex-
cluding characteristics that do impact effectiveness could de-
crease the positive impact on students, but including extra-
neous characteristics that do not impact effectiveness could
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also decrease this impact. In the latter case, the system
might have to do more exploration to learn how the effec-
tiveness of instruction differs along each extraneous charac-
teristic, and so direct a greater number of students to less
effective versions.

The second issue raised by online adaptive algorithms is
whether the constantly adapting system will benefit certain
groups of students more than others. Since contextual MAB
algorithms learn by observing how the consequences of their
choices are related to feature values, students whose charac-
teristics are less common may be more likely to interact with
the algorithm when it has limited information about what
is most effective for that type of student. This could exacer-
bate differences in outcomes between subgroups of students.
Yet, such algorithms could also have an equalizing effect for
students with less common characteristics: students have
the potential to experience a version of the technology that
is most appropriate for them, even when this version is not
the most appropriate for a typical student.

In this paper, we use simulations to explore these issues and
their consequences for student experiences in adaptive edu-
cational technologies which use MAB algorithms. We focus
on three common types of models for how student charac-
teristics are related to outcomes: a baseline model in which
student characteristics do not impact the effectiveness of dif-
ferent versions of the technology; a universal optimal action
model, in which student characteristics impact effectiveness
but the same version is most effective for all students; and
a personalized optimal action model, in which student char-
acteristics impact which version leads to the best outcomes
for a given student.

We show that including the potential for personalization
significantly degrades student outcomes except in the per-
sonalized optimal action model, where this information is
necessary to encode the best policy. While the cost of in-
cluding more characteristics for personalization is relatively
modest, including these characteristics leads to greater vari-
ation: the algorithm is less consistent in learning which ver-
sions are best overall, and students may be systematically
treated differently based on characteristics that do not in-
fluence their outcomes. This increased variance is worsened
when student characteristics are not uniformly distributed,
with some characteristics being more common than others.
We use experimental data to show the potential benefits of
personalization and add nuance to the prior simulation re-
sults by demonstrating how personalization can benefit not
only students in a minority group but also all groups of
students. We end by discussing the consequences of these
results for integrating adaptive components into existing ed-
ucational technologies.

2. RELATED WORK
A wide array of work has focused on using MAB and con-
textual MAB algorithms for optimization, including applica-
tions in advertising and recommendations (e.g., [17]), crowd-
sourcing (e.g., [14]), and designing experiments and clinical
trials (e.g., [26]). Within educational technologies, MAB
algorithms have been primarily used in two ways. Some
work has used these algorithms to select problems that are
of an appropriate difficulty level for a particular student [8,

16, 22]; unlike our work, these applications typically com-
bine learned profiles about students with a second source of
knowledge, such as prerequisite structure. We focus on a
second proposed usage of MAB algorithms in education: as-
signing students to a particular version of a technology. For
example, non-contextual MAB algorithms have been used to
choose among crowdsourced explanations [27] and to explore
an extremely large range of interface designs [19]. Some of
this work has also considered the implications of collecting
experimental data via MAB algorithms on measurement and
inference [18, 20], showing systematic biases that can impair
the drawing of conclusions about the conditions. Only a lim-
ited amount of work has applied contextual MAB algorithms
to personalize which versions of a technology a student expe-
riences (e.g., [24], but focused primarily on measurement).
We build on this body of work by considering the perfor-
mance implications of several common scenarios for how stu-
dent characteristics, versions of an educational technology,
and outcomes are related. Additionally, by specifically ex-
amining some scenarios in which student characteristics are
unevenly distributed, we raise issues about personalization
for minority groups of students.

There is a great deal of theory-based literature on both stan-
dard and contextual MAB algorithms related to quantifying
performance, especially in terms of asymptotically bounding
growth in cumulative regret (the amount that the expected
reward from choosing an optimal action outpaces reward
from the actually chosen actions). The optimal worst-case
bound on regret growth is logarithmic [4]. Furthermore,
the inclusion of contextual variables increases cumulative re-
gret at least linearly; for Thompson sampling, which we use
in our simulations, the regret bounds grow quadratically in
the number of contextual variables [2]. We use simulations
to consider non-asymptotic settings and focus on areas less
explored theoretically, like impacts on individual groups of
students and variability in performance.

In this paper, we are particularly concerned with how out-
comes differ among different groups of students. One of
the promises of educational technologies is to boost all stu-
dents’ outcomes to the level that can be achieved by indi-
vidualized tutoring [9], and online adaptive algorithms may
make it easier to develop such systems. Yet, the broader
machine learning community has recently highlighted how
automated systems can learn or exacerbate existing inequal-
ities (see, e.g., [12] for an overview). Within educational
data mining, there have been mixed results when the fair-
ness of different models has been explored, and this variation
has often been correlated with the diversity of the training
data: [13] demonstrated that a model trained on a large
and diverse dataset performed similarly well for predicting
on-time graduation for students in different demographic
groups, while [11] found disparities across genders in predict-
ing course dropout, often associated with gender imbalances
in the training data. This raises the issue of how to best use
educational data mining in ways that promote equity across
students. Within the MAB literature specifically, there has
been limited discussion of fairness (e.g., [15]), although [21]
show that a particular technical definition of data diversity
can lead to fairer outcomes. Like in our work, [21] shows
cases where the presence or absence of a majority group
can help or harm minority group outcomes. Our work con-
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siders scenarios specific to education, demonstrating that
the particular scenario in [21] can be generalized consid-
erably, and more precisely characterizes the circumstances
in which including personal characteristics increases equity
versus where doing so may lead to systematically poorer ex-
periences for students in a minority group.

3. CONTEXTUAL MAB ALGORITHMS
We treat the problem of determining what version of an ed-
ucational technology will be most effective for a student as
a MAB problem. In such problems, a system must repeat-
edly choose among several actions, a1, . . . , aK . The system
initially does not know which action is likely to be the most
effective, but after each action choice, the system receives
feedback in the form of a stochastic reward r(t).

There are a variety of MAB algorithms for choosing ac-
tions. We focus on Thompson sampling [1], which is a
regret-minimizing algorithm that exhibits logarithmic regret
growth. Thompson sampling maintains for each action a dis-
tribution over reward values. This distribution is updated
after each action choice and represents the posterior distri-
bution over reward values given the observed data. At each
timestep, the algorithm samples from the posterior distri-
bution over rewards for each action, and then chooses the
action with the highest sampled value. While Thompson
sampling is also applicable to real-valued rewards, many ed-
ucational outcomes are binary, such as whether a student
completes a homework assignment or answers a question
correctly. Thus, we focus on these binary rewards in this
paper, using a Beta prior distribution to enable simple con-
jugate updates after each choice.

In our setting in which we choose versions of an educational
technology for each student, the actions are the different
versions of the technology, and the reward is the student
outcome. For example, imagine a student interacting with a
system to do her math homework. The system might choose
between two actions when the student asks for a hint: (a)
show a fully worked example, versus (b) provide the first
step of the problem as a hint and ask the student to identify
an appropriate second step. The student outcome could be
whether or not she completes the homework assignment.

In a traditional MAB problem, the reward distribution is
fixed given the action choice. However, in the situation
above, the reward may be dependent on the characteristics
of the student. For instance, a student who has stronger
proficiency in the prerequisite skills may be more prepared
to identify what to do next in the problem, while a student
with weaker proficiency may not be able to identify what
to do next. A contextual MAB algorithm incorporates such
student characteristics as features into its action choices.

For parametric contextual MAB algorithms, the features
must be predetermined, including whether interactions be-
tween features is permitted. We adopt a contextual Thomp-
son sampling approach that uses regularized Bayesian lo-
gistic regression to approximate the distribution of rewards
given the features [2, 7]. The algorithm learns a distribu-
tion over the feature weights as coefficients using a Gaussian
posterior approximation. To make each new action choice,
the algorithm computes a reward value for each action by

sampling each weight independently. The chosen action is
the action with the highest sampled reward value. Updates
may occur after each action or in batches to decrease compu-
tational costs; because the feature vectors that we consider
are relatively small, we update after each action.

4. IMPORTANCE OF FEATURE CHOICE
When using a contextual MAB algorithm to personalize stu-
dent experiences in an educational technology, the system
designer must choose which student characteristics to in-
clude as variables for personalization. The designer is very
unlikely to know with certainty which student features are
truly relevant and will actually impact student outcomes.
One could include every possible relevant feature, knowing
that while the algorithm can learn that an included feature
is not relevant, it cannot learn that a non-included feature
is in fact relevant. However, asymptotic growth rates for
regret are quadratic in the number of features [2], meaning
that as more features are included, the algorithm will tend
to take longer to learn. Designers thus must balance the de-
sire to include all features that influence outcomes with the
knowledge that extraneous features could hurt performance.

To better understand how student outcomes are impacted
by the choice of features for personalization, we systemati-
cally explore the inclusion of both relevant and non-relevant
features in a contextual MAB algorithm and examine the
impact on student outcomes and on the rate of assigning stu-
dents to their personally optimal version of the technology.
For these simulations, we assume that features are uncorre-
lated and that their values are chosen uniformly at random
for each student, i.e., the probability of observing any par-
ticular combination of features is the same as observing any
other combination of features.

4.1 Methods
4.1.1 Representing student features

We focus on binary student features and thus feature val-
ues implicitly group students. For example, some CS classes
may have two different prerequisites, such as a discrete math
course taught by the CS department or a similar one taught
by the math department. Students who have taken the CS
version will all have the same value for the prerequisite fea-
ture, while those who take the math one will have the other.1

4.1.2 Outcome-generating models
The outcome-generating model describes the true relation-
ship between student characteristics (feature values), the ac-
tions of assigning students to different versions of a technol-
ogy, and the outcomes of student learning. We focus on
scenarios in which two actions, such as choosing between
concrete versus abstract explanations, affect the outcomes
for two groups of students, such as those with math versus
CS prerequisite as aforementioned.

In each of the models, we generate the true reward prob-
ability for a student with particular features using logistic
regression, with a separate logistic regression equation for

1In both the MAB algorithms and the outcome-generating
models, feature values are represented using dummy vari-
ables.
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Relevant Feature: F=0 F=1
Action Number: A1 A2 A1 A2

Baseline 0.4 0.6 0.4 0.6
Universal optimal action (1) 0.4 0.6 0.6 0.8
Universal optimal action (2) 0.4 0.6 0.4 0.8
Universal optimal action (3) 0.4 0.6 0.5 0.7
Universal optimal action (4) 0.4 0.6 0.8 0.9
Personalized optimal action 0.4 0.6 0.6 0.4

Table 1: Reward probabilities for each combination
of actions (A1 and A2) and values of the relevant
feature (F=0 and F=1) in the simulations. The op-
timal action, shown in bold, is the same (A2) for
both feature values, except for the personalized op-
timal action model.

each action. Given a feature vector x(j) for student j, the
reward probabilities are generated according to:

Paction=k(reward = 1 | x(j)) = sigmoid(b0,k +

n∑
i=1

bi,kxi),

where bk is the coefficient vector for action k and has inter-
cept b0,k. For our simulations, the coefficients for the feature
values were zero for any feature past the first feature, mean-
ing that a maximum of one student feature impacts the out-
comes but more features may still be observed. By varying
the coefficients for the intercept (b0,k) and the first feature,
we produced three models for the relationship among stu-
dent characteristics (i.e., features or feature values), action
choices, and outcomes (see Table 1):

• Baseline: Student features have no impact on outcomes.

• Universal optimal action: Student features have an impact
on outcomes, but not the optimal action—the best version
of the technology is the same regardless of features.

• Personalized optimal action: Student features impact out-
comes, meaning that the optimal action differs based on
features—some students are better off experiencing Version
A of the technology while for others Version B.

For the baseline model,the coefficients of the actions vary
only for the intercept in order to control the effect of each
action when student features are ignored. For the universal
optimal action model, we included four variations to capture
different educationally meaningful scenarios. For instance,
universal optimal action (1) reflects a case in which differ-
ences in prior knowledge minimally interact with the impact
of different versions of a technological intervention, while (2)
reflects a student characteristic magnifying the effectiveness
of an intervention.

4.1.3 Simulation parameters
We varied three factors across the simulations: the outcome-
generating model; the MAB algorithm (contextual or non-
contextual); and the number of student features. For all
simulations, we considered three horizons: classrooms of 50,
250, and 1000 students. Multiple horizons illustrate the be-
havior of the algorithm at different time points and can guide
decisions for incorporating adaptive algorithms based on the
number of students who are expected to interact with the
system. Each simulation was repeated 1000 times.

For the non-contextual Thompson sampling, parameters for
a Beta distribution per action are learned independent of
student features. For the contextual algorithm, we specify
the weights of the student features as model coefficients. All
simulations included at least one student feature regardless
of the outcome-generating models.

To model the fact that curriculum designers may not know
which student characteristics really matter, we included sim-
ulations where the observed features were a superset of those
that actually impacted outcomes. Specifically, we consid-
ered models with a total of 1, 2, 3, 5, 7, 8, and 10 features.
Therefore, for the non-baseline scenarios, the proportion of
included features that impacted outcomes varied from 100%
to only 10%. Since our contextual features are binary, we
include indicator variables for each of the two values, and
learn a separate weight for each indicator variable.2

4.2 Results
First we focused on analyzing the performance of contextual
and non-contextual MAB algorithms for the three outcome-
generating models across 1 to 10 student features (i.e., con-
textual variables). Using an analysis of covariance (AN-
COVA), we compared the two MAB algorithms’ performance
with respect to the proportion of optimal actions for 250 stu-
dents across 1000 trials, treating the number of contextual
variables as a covariate.

Baseline: When student features do not influence out-
comes, we see that as expected, the non-contextual bandit
outperforms the contextual bandit (Table 2): average per-
formance per student for the final 50 out of 1000 students
using the contextual algorithm is similar to that of the first
250 students using the non-contextual algorithm (Figure 2).
As the number of student features increases, the contextual
MAB chooses a lower proportion of optimal actions for the
first 250 students (Figure 1a), but the effect is relatively
small especially when considering the impact on actual re-
ward (t(13996) = −10.880, p < 0.001, b = −0.006, 95% CI
= [−0.007,−0.005]). At longer horizons, the number of stu-
dent features has less of an impact on overall average reward
(Figure 2), which we discuss more below.

Universal optimal action: When outcomes are depen-
dent on student features, the contextual MAB algorithm
can learn a more accurate model than the non-contextual
algorithm. However, when this more accurate model is not
needed for optimal action choices, learning the more accurate
model does not improve action choices: the non-contextual
bandit outperforms the contextual bandits in all four sce-
narios (Table 2; see Figure 1b for scenario 1). While each
scenario might arise due to different educational conditions,
they are all very similar in how they appear to the non-
contextual bandit algorithm. The non-contextual bandit
sees the two groups of students as identical, leading the
overall performance to be the average for each group. These
changes in the average effectiveness of each intervention im-
pact the algorithm’s performance but do not necessarily de-
grade that performance; instead, the impact is dependent

2In pilot simulations, this encoding led to better perfor-
mance than if only a single coefficient was learned for each
feature, and corrected asymmetries in performance for stu-
dents who had different values of the feature.
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Figure 1: Swarm plots for the proportion of optimal actions for the two bandit types. Each point represents
results from one trial with 250 students. For the universal optimal action, all scenarios show similar results;
hence only scenario (1) is shown. The bimodality of the contextual bandits, especially at low numbers of
contextual variables, highlights the potential risks of personalization.

Superior bandit |b| 95% CI F (1, 13996) p Cohen’s d

Baseline Non Contextual 0.098 [0.089, 0.108] 2678.0 < .001 0.871
Universal optimal action (1) Non Contextual 0.088 [0.079, 0.097] 2750.0 < .001 0.880
Universal optimal action (2) Non Contextual 0.078 [0.072, 0.085] 3853.0 < .001 1.042
Universal optimal action (3) Non Contextual 0.101 [0.092, 0.11] 2891.0 < .001 0.904
Universal optimal action (4) Non Contextual 0.074 [0.063, 0.085] 1865.0 < .001 0.725
Personalized optimal action Contextual 0.295 [0.287, 0.302] 10816.0 < .001 1.677

Table 2: Inferential statistics for proportion of optimal actions for the two bandit types across all outcome-
generating models, simulated for 1000 trials of 250 students each. b represents the coefficient of improvement
of results for the superior bandit after controlling for the number of contextual variables.
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Figure 2: Average reward per student across 1–10
contextual variables for the two bandit types in the
baseline model. In this model, the maximum possi-
ble expected reward is 0.6, and the expected reward
for uniform random assignment is 0.5. Error bars
represent 1 standard error.

on how similar the two interventions are in their expected
outcomes and how close those expected outcomes are to 0.5,
where there is the most variance.

Personalized optimal action: When the best policy for
individual students depends on their features, the contextual
bandit significantly outperforms the non-contextual bandit
(Table 2). When only one student feature is included, the
contextual MAB algorithm chooses the optimal action al-
most 70% of the time for the first 50 students; this increases
to almost 90% for the final 50 of the total 250. Including ex-
tra student features decreases performance - if ten features
are included and only one impacts the policy, the overall

proportion of optimal actions falls to about 65%. Yet, this
is still an improvement over the non-contextual algorithm
(Figure 1c). These results suggest that even if a relatively
small number of students will interact with the system and
one is uncertain about which of a (limited) set of features
will impact results, including those features will on average
have a positive impact on student outcomes if one is con-
fident that the best version of the system for an individual
student varies based on one of those features.

Variability across simulations: Examining variability
across simulations provides insight into how likely actual
deployments of these algorithms are to reflect their average
performance. Across all models, the contextual MAB algo-
rithm exhibited greater variability in performance than the
non-contextual MAB algorithm (Figure 1). Surprisingly, in-
creasing the number of student features leads to lower vari-
ance for the contextual MAB algorithm. With small num-
bers of student features, there is often a concentration of sim-
ulations with lower achieved outcomes, resulting in bimodal
distributions (Figure 1). The bimodality emerges because
the algorithm can adapt more quickly, making it somewhat
more vulnerable to underestimating parameter values based
on a few samples with unexpected low rewards. Because the
parameter estimates influence future action choices, data to
correct these underestimates may not be collected quickly
enough (as has been documented for non-contextual ban-
dits in, e.g., [10]). In contrast, increasing the number of
student features increases variation near the mean but elimi-
nates the bimodality (Figure 1) since the algorithm performs
more exploration to learn the larger number of parameters.
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This makes it less likely to collect data that lead to erro-
neous conclusions about the effectiveness of actions. Errors
in the parameter values are more likely to be corrected be-
cause they are unlikely to lead to the same choices for all
student features, hence creating more variability in action
choice for students with a specific value of a single feature.
Indeed, the simulation results support these interpretations:
for the baseline and universal optimal action models in a
1000-student classroom (see Figure 2 for baseline), average
reward for the first 250 students is lower but reward for the
final 50 students is higher as the number of contextual vari-
ables increases. There is thus a trade-off between expected
outcomes and variability: the ability of the contextual MAB
algorithm to adapt more quickly when it has fewer features
to learn comes at the cost of it being less able to correct for
wrong conclusions from small amounts of data.

Variability in policies across students: As noted above,
the extra parameters learned by the contextual MAB algo-
rithm lead to the potential for greater variability in action
choices within a single simulation. This can systematically
affect groups of students when the algorithm attaches spu-
rious relevance to a feature that does not actually impact
outcomes. We can see this pattern by examining differ-
ences in action probabilities for students who differ only by
characteristics that do not impact outcomes: that is, con-
sidering all students who have the same value for the first
feature, how does the probability of choosing a particular
action change based on their different values for the other
features? As the number of contextual variables increases,
the average maximum difference in action choice probability
between such students also increases from 18–25% when two
student features are included in the model to over 90% when
ten features are included in the model after running through
250 students. This occurs both based on the greater expres-
sivity of the model with more student features and the fact
that the model with more student features is likely still learn-
ing about the impact of each of these features. This raises
potential concerns about inequity: students who should be
treated identically by the system may instead be treated sys-
tematically differently, based on features that do not impact
how they learn.

5. IMPACT OF UNEVEN DISTRIBUTION
OF STUDENT CHARACTERISTICS

The results of the previous simulations demonstrate that
in situations where student characteristics (features) impact
the outcome of different educational interventions, a contex-
tual MAB algorithm only provides an improvement over a
non-contextual algorithm when knowledge about the charac-
teristic is necessary for choosing the best action. These sim-
ulations provided insight into how performance is impacted
by different patterns of relationships between student char-
acteristics and outcomes, with the assumption that those
characteristics were uniformly distributed. However, in re-
ality, some characteristics are likely to be more common than
others. For example, when optimizing which hint to give to
students who answer a question incorrectly, the algorithm is
more likely to encounter a student with lower prior knowl-
edge than one with higher prior knowledge. Thus we now
relax this assumption and explore how changing the distri-
bution of student characteristics impacts student outcomes
for both types of MAB algorithms. In these simulations, we
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Figure 3: Proportion of optimal actions for minority
groups with sizes of 10%–50% for the two bandit
types across the three outcome-generating models,
limited to one contextual variable. Standard errors,
represented by the translucent bands, are negligible.

examined not only overall outcomes, but also outcomes for
different groups of students. Attention to group-specific out-
comes is vital for identifying inequitable impacts of adaptive
algorithms.

5.1 Methods
Similar to the first set of simulations, we compared non-
contextual and contextual MAB implementations that used
Thompson sampling across the same three horizons of 50,
250, and 1000 students, with a focus on 250; we repeated
each simulation 1000 times. These simulations include a new
independent variable: the proportion of students in each
group. Specifically, for each simulated student, we varied
the probability of the student being in the minority group
(i.e., having a value of one for the first student characteris-
tic) from 10% to 50%, using 10% increments. In addition
to analyzing performance across all students, we examined
performance for both the minority and majority groups sep-
arately. We also examined the balanced success rate, defined
as the simple average of the group-specific performances [5].
Balanced success rate provides a way of examining perfor-
mance that treats each group as equally important, even
though one group may have more students than another.

5.2 Results
As in the previous analysis, we used an ANCOVA to com-
pare the performance for the two bandit types in terms of
the proportion of optimal actions, but this time treating the
percentage of the minority group as a covariate.

One student characteristic: With one student charac-
teristic, the contextual MAB algorithm’s performance for
the minority group decreases as the size of the minority
group becomes smaller, across all outcome-generating mod-
els (Figure 3b and Figure 4; t(59996) = −33.962, p < 0.001,
b = −0.427, 95% CI = [−0.452,−0.402]). This leads the con-
textual MAB algorithm to have a lower balanced success rate
for smaller minority groups. However, overall performance
across all students is slightly better since so many more stu-
dents are in the majority group (Figure 4; t(59996) = 16.633,
p < 0.001, b = 0.126, 95% CI = [0.111, 0.141]). In other
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Figure 4: Comparing the proportion of optimal actions of the contextual bandit between 1 and 5 student
features (i.e., contextual variables) for the majority and minority groups, as well as their balanced and overall
averages, across minority group sizes of 10%–50%. Standard errors, represented by the translucent bands,
are negligible.

words, decreasing the minority group size hurts the mi-
nority group more than it helps the majority group on a
per-student basis; but replacing students from the minor-
ity group, who are assigned worse conditions, with students
from the majority group, who are assigned better conditions,
increases overall reward.

This pattern of results occurs because the contextual MAB
has more uncertainty about the impact of the particular
value of the student characteristic that appeared fewer times:
in the least balanced case, we expect the minority group to
be seen only 25 times on average given a horizon of 250 stu-
dents. Hence, providing a model with the potential to per-
sonalize for a minority group is a calculated risk - although
the extra expressivity is likely intended to improve experi-
ences for all groups of students, it can negatively impact
minority groups, with a larger negative impact for smaller
minority groups.

In contrast, the non-contextual MAB algorithm is relatively
unaffected by the changing distribution of student charac-
teristics in both the baseline (t(9996) = 0.497, p = 0.619)
and universal optimal action scenarios (t(39996) = 1.506,
p = 0.132), as shown by Figure 3a. The changing distribu-
tion of student characteristics changes the expected rate of
obtained reward from each action, but the changes are small
enough that they have little impact on the algorithm’s abil-
ity to choose optimal actions.

However, for the personalized optimal action model, the size
of the minority group does have a large impact on individual
student outcomes for the non-contextual MAB algorithm:
when the minority group is small, the algorithm learns to
choose the action that is best for the majority and worst for
the minority, resulting in the optimal action being chosen
only 15% of the time for the minority group, within a horizon
of 250 students (Figure 3a). When the two groups are of
equal size, the algorithm has no systematic information that
shows one action as consistently better or worse than the
other; thus on average, it chooses the optimal action about
50% of the time for both groups.

Additional student characteristics for the contextual
MAB algorithm: When the number of student character-
istics increases, the impact on the minority and majority
groups differs for the baseline and universal optimal action
models compared to the personalized optimal action (Fig-
ure 4). In the two former models, the impact on balanced
success rate is generally small: as the number of student
characteristics increases from one to five, balanced success
decreases no more than 8%, except by 11% in universal opti-
mal action (4); for most of these models, the decrease is even
smaller when the minority group is smaller. In these models,
the algorithm’s performance for small minority groups is im-
proved with more student characteristics, while performance
for majority groups decreases. For example, in the baseline
scenario with 10% of students in the minority group, the al-
gorithm chooses the optimal action for 71% of the minority
group when there are five student characteristics, compared
to 61% of these students when there is only one student
characteristic. More student characteristics leads to more
exploration with the initial students, and thus the algorithm
is less likely to systematically execute a bad policy for the
minority group based on a small number of initial samples.

For the personalized optimal action scenario, increasing the
number of student characteristics from one to five decreases
performance for both minority and majority groups by about
15% regardless of the size of the minority group, uniformly
lowering balanced success rate. Due to the extra exploration
caused by the extraneous student characteristics, the algo-
rithm is slower to exploit the actual relationship between the
relevant student characteristic and the action choice, with-
out differential impact based on minority group size.

6. REAL-WORLD EXPERIMENTS
The first two sets of simulations can guide system designers
when making decisions about personalizing based on stu-
dent features. However, they have some limitations: while
they considered a relatively large space of possibilities for
how outcomes relate to student features, they focused on
showing a general variety of cases rather than on specific
cases that might be most common or of particular interest
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Problem Set Students Q1 Size Q2 Size Q3 Size Q4 Size

Uneven Student Distribution 293151 320 113 (35.3%) 100 (31.3%) 69 (21.6%) 38 (11.9%)
Even Student Distribution 263057 129 33 (25.6%) 28 (21.7%) 34 (26.4%) 34 (26.4%)

Table 3: Student totals and group distributions in the original ASSISTments data [23] for the two problem
sets of interest. Prior percent correct is discretized before removing students who have never answered
incorrectly to experience the assigned condition, biasing group size towards the lower quartiles in the Uneven
Student Distribution.

(a) (b) (c) (d)

Figure 5: Original average reward per student in the ASSISTments data [23], across the four quartiles
(Q1–Q4) of prior percent correct and their averages, for the two conditions in the experiments (control and
experimental) illustrates our model parameters of real-world scenarios.

in education. To address this, we conducted several case
studies of how MAB algorithms would have impacted ac-
tual experiments. We consider existing experimental data in
which the optimal action would be personalized to see if the
contextual MAB algorithms benefits students (as would be
expected from our previous simulations) and also to demon-
strate how factors from the previous simulations manifest in
real-world scenarios.

The experiments were previously conducted within ASSIST-
ments, an online learning system, and focused primarily
on middle school math. We selected several experiments
from [23] based on how student outcomes were related to
their prior successes in the system as well as their assign-
ment of either the control or experimental condition. Prior
success in the system is a strong candidate to be a student
feature for personalization: it is typically easily available
and can serve as a proxy for prior knowledge, which has
been shown to influence the success of different instructional
strategies [25].

6.1 Methods
To model previously collected ASSISTments data in our
MAB framework, we (1) transformed both the student char-
acteristics and the student outcomes into discrete variables,3

and (2) resampled from the data to generate outcomes when
the MAB algorithm assigned a condition.

For step (1), we first discretized students’ prior percent cor-
rect on problems within ASSISTments, the sole student fea-
ture that we included for personalization, into four quartiles:
the 25% of students who began the homework assignment
with the lowest prior percent correct (Q1), then those in the
26–50% range (Q2), and so on. The dataset contains some
students who began the homework but were not assigned to

3MAB algorithms can handle non-categorical data, but we
focus on the categorical case to mirror our prior simulations.

a condition. Since the experiments in [23] mainly manip-
ulated students’ experiences (e.g. type of hint) when they
answered a question incorrectly, students who have never
answered incorrectly are not included in the experiment re-
sults (nor will the MAB algorithm make choices for them).
However, they are included in the quartile cutoffs, which
means that in the population of students with whom the
MAB algorithm interacts, the number of students in each
quartile may not be uniform.

We also chose and discretized the student outcome mea-
sures. These experiments included two different measures
of student outcomes: whether each student completed the
homework and the number of problems that each student
answered in the homework. All experiments took place in
the SkillBuilder interface, where students must answer three
consecutive problems correctly to complete the homework.
Completion of homework (denoted Completed HW ) is al-
ready discrete and could easily be collected in real time; two
of our simulations use this measure. However, it is relatively
coarse, as the vast majority of students completed the home-
work. Thus, we also used a discretized version of the number
of problems to completion (denoted Completed Quickly). If
a student completes the homework, doing so in fewer prob-
lems is a better outcome than doing so in more problems.
Outcomes were based on the median problem count for stu-
dents who completed the homework. Students who com-
pleted the homework in the median number of problems or
fewer had positive reward, while those who did not complete
the homework or completed it more slowly had no reward.
Though for practical use prior data would be needed to se-
lect an appropriate cut point, using a cut point based on
collected data in our simulations measures the performance
of students more closely.

For step (2), we simulate a MAB algorithm’s performance by
repeatedly sampling students from the experiment. Within
each trial, we fix the number of timesteps to the total num-
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Figure 6: Swarm plots for the proportion of optimal actions for the two bandit types for each quartile of prior
percent correct and their averages. Each point represents results from each of the 1000 trials per experiment
and the solid black lines indicate the means of each swarm plots. Points for Q4 of Even Student Distribution,
Completed HW are clustered at 1.0 because both actions are optimal. The extra information learned by the
contextual bandit improves performance in most cases but the bimodality for some quartiles demonstrates
the associated systematic risks.

ber of students in the original experiment. At each timestep,
a random student is sampled, and the algorithm then selects
a condition for that student. To compute the outcome, we
sample from all outcomes for students in the experiment who
were in the same quartile for prior percent correct and who
experienced the same chosen condition. Each trial thus rep-
resents an experiment of the same size as the original, with
the students drawn with replacement from the experimental
data. We randomized each of the 1000 trials, though for
each trial, we use the same student ordering for both types
of MAB algorithms.

In our case studies, we focus on one problem set (#293151)
where students are unevenly distributed across quartiles,
with more lower-performing students (Q1), and one prob-
lem set (#263057) in which students are more evenly dis-
tributed across quartiles (see Table 6). With the two dif-
ferent outcome measures, this resulted in four simulation
scenarios. We chose these problem sets because they had
student outcomes that varied based on both condition and
student quartile (see Figure 5).

6.2 Results
In all four settings, at least one quartile of students (out
of Q1–Q4) was helped by the contextual MAB algorithm,
and in three of the four settings, average outcomes across
all students were improved by personalization.

Uneven Student Distribution, Completed HW: As
shown in Figure 6a, in this scenario, students in Q4 were
much more likely to experience their optimal condition with
a contextual MAB algorithm. This occurs because the con-
dition that is best for the average student is the one that
is worse for Q4: the non-contextual MAB thus optimizes
in a way that has a systematic, negative outcome for Q4
students. Conversely, the contextual MAB algorithm does
not do as well as the non-contextual algorithm for students
in Q1–Q3 because of the extra exploration needed to learn
about more variables that are not necessary to help these
students. Overall, this means that the contextual MAB al-
gorithm had a slightly lower rate of choosing the optimal ac-
tion than the non-contextual MAB. However, the difference
is relatively small, and is even smaller in terms of average

reward: reward is reduced by less than 0.01 overall, while
is increased for Q4 students by about 0.06. In this experi-
ment, reward rates are high in general (greater than 70% for
all conditions and quartiles). Thus with 320 students, small
differences in condition assignment often are not reflected
in large differences in outcomes. Q1–Q3 students have very
similar outcomes across the two methods of condition as-
signment; Q4 has the greatest difference in success for one
condition versus another, and thus the large increase in op-
timal condition assignment for these students does boost the
average outcomes.

Uneven Student Distribution, Completed Quickly:
Using the Completed Quickly outcome measure with the
same students, students in all quartiles were more likely to
be assigned to the optimal condition when the contextual
MAB algorithm was used (Figure 6b). This pattern oc-
curs because the overall probability of a positive outcome is
very similar across the two conditions when student quar-
tiles are ignored (shown by All in Figure 5b), making it
difficult for the non-contextual bandit to learn that the ex-
perimental condition is better on average. In contrast, the
differences between conditions are large for all quartiles ex-
cept Q2. Thus, the information from the student quartiles
makes the problem easier for the contextual MAB algorithm,
though the relatively small difference between conditions for
Q2 results in the lowest overall proportion of optimal action
choices. This simulation thus importantly shows a scenario
that was not explored in the prior simulations, in which
knowing about extra information increases the number of
parameters to learn but makes learning about each of those
individual parameters easier.

Even Student Distribution, Completed HW: For this
scenario, there were again very high reward probabilities
across all conditions, and a relatively small overall difference
between conditions but larger differences between conditions
for three of the four quartiles. The results from the previous
simulation were mirrored here: all groups with some reward
rates of less than 100% were aided by the contextual MAB
algorithm.

Even Student Distribution, Completed Quickly: Fi-
nally, using the Completed Quickly outcome measure for this
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second set of students, the results were still largely in favor
of the contextual MAB algorithm. As the experimental con-
dition is better on average, students in Q1 experience a large
positive impact through personalization because the control
condition is uniquely better for them. Q2 and Q3 also ex-
perience positive impacts, with the impact on Q2 students
being larger because the difference between the two condi-
tions is larger, which speeds learning for the contextual ban-
dit. Conversely, Q4 students experience slightly less positive
outcomes under the contextual MAB algorithm because the
small difference between conditions slows learning; in com-
parison, the contextual MAB algorithm is more beneficial
for Q4 students since the overall difference between condi-
tions across all students is larger than the difference for Q4
students only.

Variability in real-world scenarios: Variability across
trials in these scenarios showed the same trend as in the
previous simulations: the non-contextual MAB algorithm
typically has slightly more variation around the mean of the
distribution, but only the contextual MAB algorithm shows
bimodality, with some trials showing very poor performance
for at least one of the groups (Figure 6).

7. DISCUSSION
Real-time adaptive algorithms can respond quickly to opti-
mize experiences for individual students, and their expres-
sivity for personalizing experiences increases with each addi-
tional type of student information they are given. In this pa-
per, we have shown that this expressivity is worthwhile only
when it is necessary for expressing the best policy to im-
prove student outcomes. It is also especially helpful in cases
where student characteristics are not uniformly distributed.
In that case, an algorithm without the extra information
may instead learn a policy that systematically optimizes
for the majority but not for a minority group. However,
when this expressivity is not necessary, it increases vari-
ability across students and also increases the time for iden-
tifying the correct policy, thus significantly decreasing the
number of students assigned the best version of the technol-
ogy and slightly decreasing their average outcomes. Despite
this, the results based on the real-world experimental data
clarify the potential benefits of personalization by demon-
strating that having extra information about students can
sometimes make learning easier, outweighing the negative
impact of learning additional parameters.

There are several limitations to our results. First, we have
focused only on discrete student features and discrete out-
comes but continuous parameters are also common. For ex-
ample, we might measure student scores rather than home-
work completion or model prior knowledge as an estimated
ability parameter. If one wanted to extend these analyses
to real-valued student features, one could easily incorporate
them into the current modeling framework with versions of
Thompson sampling for real-valued outcomes [2], and there
exist metrics from a large literature for assessing whether
students are treated fairly (e.g., [6]). Using real-valued pa-
rameters is unlikely to significantly impact trends in results,
except that defining student groups for analyzing equitable
outcomes is more difficult. Our results from our universal
optimal action scenarios show that, with binary rewards,
knowledge of the student features is not beneficial if it is

unnecessary for expressing the best policy. However, these
results may not translate to the real-valued rewards case,
where the latent student features will add to the variability
in the distributions observed by the non-contextual bandit,
and exploring these scenarios is an important step for future
work. A second limitation is that our simulations comprise
only a single student feature that influences the outcome,
though in actual deployments multiple features may influ-
ence the best policy. Still, we believe that our results can
guide system designers when thinking about such scenarios,
especially in weighing the costs and benefits of including
each possible variable.

The results from the real-world scenarios highlight the po-
tential value of MAB algorithms for educational technolo-
gies. For almost all scenarios and groups, both types of MAB
algorithms chose the optimal condition more often than if
students had been assigned uniformly at random, and av-
erage rewards were in many cases very close to the optimal
expected reward (i.e. if the optimal action had been chosen
for all students). The absolute difference in rewards was rel-
atively small between the two bandit types–at most 0.075–
and the contextual bandit achieved at worst 12% less than
the optimal expected reward for any student group. Yet the
earlier simulations urge caution for incorporating student
characteristics, due to (1) decreases in achieved outcomes
when these characteristics are unnecessary, (2) increases in
variability of performance, and (3) the systematically differ-
ent treatment of students based on irrelevant characteristics.
Thus, system designers should weigh the risk of not person-
alizing when the best policy for the minority differs from
the majority with these side effects of personalization and
ultimately strive to only include variables that past evidence
suggests differentially impact outcomes.

One could make a number of extensions of this work for us-
ing MAB algorithms to improve and personalize educational
technologies. First, contextual MAB algorithms might mit-
igate issues of biases when different types of students inter-
act with an educational technology and while all are most
helped by the same version of the technology, their out-
comes have different distributions. For example, struggling
students may complete homework later, leading the MAB
algorithm’s early estimates to be non-representative of the
broader population. Prior work has shown that this bias
significantly worsens inference about the effectiveness of the
technology as well as expected student outcomes [20]: the
use of a contextual MAB algorithm could allow the system
to adapt to such differences across students. Second, if the
technology is used by a large number of students, the set
of variables used by the contextual algorithm could be in-
creased as more data are collected. Such a system might
improve consistency across student outcomes, while still per-
sonalizing based on truly relevant features that are justified
the sufficient information collected. The work in this paper
both provides a starting point for considering what scenar-
ios, algorithms, and metrics should be explored in future
work, as well as guidance for system designers who would
like to deploy MAB algorithms within their own technolo-
gies but are uncertain about which student characteristics,
if any, to include for personalization.
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